Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.962.410
Filtrar
1.
Bol. latinoam. Caribe plantas med. aromát ; 23(4): 523-533, jul. 2024. tab
Artigo em Inglês | LILACS | ID: biblio-1538056

RESUMO

Leaves of Croton stipulaceuswere extracted (EHex, ECHCl3and EEtOH extracts) to assesstheir antioxidant potential, anti-inflammatory activity in murine models and acute toxicity. EEtOH showed the highest effect in DPPH (37.80% inhibition), FRAP (1065.00 ± 55.30 µmolFe2+) and total polyphenols (231.24 ± 9.05 meq AG/gM). EHex was the most active, ~ 50% inhibition of TPA-induced ear edema; while EEtOH (dose of 2 mg/ear) showed the highest inhibition in the chronic model (97% inhibition), and inhibited MPO activity (48%). In carrageenan-induced edema, ECHCl3(dose 500 mg/kg) was the most active. None of the extracts showed acute toxicity (LD50) at 2 g/kg (p.o.). This work is the first report that supports the traditional use of C. stipulaceusas an anti-inflammatory.


De las hojas de Croton stipulaceusse obtuvieron diferentes extractos (EHex, ECHCl3y EEtOH) evaluando el potencial antioxidante y la actividad antiinflamatoria en modelos murinos y la toxicidad aguda. El EEtOH mostró mayor efecto en DPPH (37.80% inhibición), FRAP (1065.00 ± 55.30 µmolFe2+) y polifenolestotales (231.24 ± 9.05 meq AG/gM). El EHex fue el más activo, cercano al 50% de inhibición del edema auricular inducido con TPA; mientras que el EEtOH (dosis de 2 mg/oreja) mostró la mayor inhibición en el modelo crónico (97% inhibición), e inhibió la actividad de la MPO (48%). En el edema inducido con carragenina, el ECHCl3(dosis 500 mg/kg) fue el más activo. Ninguno de los extractos mostró una toxicidad aguda (DL50) mayor a 2 g/kg (p.o). Este trabajo es el primer reporte que sustenta el uso tradicional de C. stipulaceuscomo antiinflamatorio.


Assuntos
Folhas de Planta/química , Croton/química , Extratos Vegetais/metabolismo , Extratos Vegetais/química , Estruturas Vegetais/metabolismo , Estruturas Vegetais/química , Folhas de Planta/metabolismo , Croton/metabolismo , Anti-Inflamatórios , Antioxidantes
2.
Bol. latinoam. Caribe plantas med. aromát ; 23(4): 608-635, jul. 2024. tab, ilus, graf
Artigo em Inglês | LILACS | ID: biblio-1538071

RESUMO

Chile has two certified origin olive products: Extra-Virgin Olive Oil (EVOO) from Huasco valley and the Azapa variety table olive from the Azapa valley. However, efficient methodologies are needed to determine the varieties and raw materials involved in the end products. In this study, we assessed the size of alleles from ten microsatellites in 20 EVOOs and in leaves and fruits of 16 olive varieties cultivated in Chile to authenticate their origins. The identification of varieties relied on specific allele sizes derived from microsatellites markers UDO99-011 and DCA18-M found in leaves and fruit mesocarp. While most Chilean single-variety EVOOs matched the variety declared on the label, inconsistencies were observed in single-variety EVOOs containing multiple varieties. Our findings confirm that microsatellites serve as a valuable as diagnostic tools for ensuring the quality control of Geographical Indication certification for Azapa olives and EVOO with Designation of Origin from Huasco.


Chile cuenta con dos productos de oliva de origen certificado: El aceite de oliva virgen extra (AOVE) del valle del Huasco y la aceituna de mesa de la variedad Azapa del valle de Azapa. Sin embargo, se necesitan metodologías eficientes para determinar las variedades y materias primas involucradas en los productos finales. En este estudio, evaluamos el tamaño de los alelos de diez microsatélites en 20 AOVEs y en hojas y frutos de 16 variedades de aceituna cultivadas en Chile para autentificar sus orígenes. La identificación de las variedades se basó en los tamaños alélicos específicos derivados de los marcadores microsatélites UDO99-011 y DCA18-M encontrados en las hojas y el mesocarpio de los frutos. Aunque la mayoría de los AOVEs chilenos monovarietales coincidían con la variedad declarada en la etiqueta, se observaron incoherencias en los AOVEs monovarietales que contenían múltiples variedades. Nuestros hallazgos confirman que los microsatélites sirven como valiosas herramientas de diagnóstico para asegurar el control de calidad de la certificación de Indicación Geográfica para aceitunas de Azapa y AOVE con Denominación de Origen de Huasco.


Assuntos
Azeite de Oliva/química , Geografia , Extratos Vegetais/química , Chile , Estruturas Vegetais/química
3.
Bol. latinoam. Caribe plantas med. aromát ; 23(4): 636-644, jul. 2024. graf, tab
Artigo em Inglês | LILACS | ID: biblio-1538072

RESUMO

Thechemical composition, antioxidant and antimicrobial activities of the essential oil from aerial parts (leaves and flowers) of Chuquiraga arcuataHarling grown in the Ecuadorian Andes were studied. One hundred and twenty-six compounds were identified in the essential oil. Monoterpene hydrocarbons (45.8%) and oxygenated monoterpenes (44.1%) had the major percentages. The most abundant compounds were camphor (21.6%), myrcene (19.5%), and 1,8-cineole (13.4%). Antioxidant activity was examined using DPPH, ABTS,and FRAP assays. The essential oil had a moderate scavenging effect and reduction of ferric ion capacity through FRAP assay. Antimicrobial activity of the essential oil was observed against four pathogenic bacteria and a fungus. The essential oil exhibited activity against all microorganism strains under test, particularly against Candida albicansand Staphylococcus aureuswith MICs of 2.43-12.10 µg/mL.


Se estudió la composición química, actividades antioxidantes y antimicrobianas del aceite esencial procedente de las partes aérea (hojas y flores) de Chuquiraga arcuataHarling cultivadas en los Andes ecuatorianos. Se identificaron 126 compuestos en el aceite esencial. Los hidrocarburos monoterpénicos (45,8%) y los monoterpenos oxigenados (44,1%) tuvieron el mayor porcentaje. Los compuestos más abundantes fueron alcanfor (21,6%), mirceno (19,5%) y 1,8-cineol (13,4%). La actividadantioxidante se examinó mediante ensayos DPPH, ABTS y FRAP. El aceite esencial tuvo un efecto eliminador moderado y una reducción de la capacidad de iones férricos mediante el ensayo FRAP. Se observó actividad antimicrobiana del aceite esencial contra cuatro bacterias y un hongo patógenos. El aceite esencial mostró actividad contra todas las cepas de microorganismos bajo prueba, particularmente contra Candida albicansy Staphylococcus aureuscon CMI de 2,43-12,10 µg/mL.


Assuntos
Óleos Voláteis/química , Extratos Vegetais/química , Antioxidantes/química , Óleos Voláteis/farmacologia , Extratos Vegetais/farmacologia , Folhas de Planta/química , Flores/química , Equador , Antioxidantes/farmacologia
4.
BMC Complement Med Ther ; 24(1): 149, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38581015

RESUMO

BACKGROUND: Diabetes Mellitus is associated with disturbances in male reproductive function and fertility. Studies have shown that oxidative stress with the subsequent inflammation and apoptosis cause these complications in diabetes. Garlic (G) (Allium sativum L) and Citrullus colocynthis (L.) Schrad (C) both have antidiabetic and antioxidant properties. Recently, we demonstrated their synergistic effects in alleviating reproductive complications when administered concomitantly. However, as even medicinal plants in long term usage may lead to some unwanted side effects of their own, we examined whether with half the original doses of these two medicinal plants we could achieve the desired results. METHODS: Thirty-five male Wistar rats were divided into five groups (n = 7/group): Control, Diabetic, Diabetic + G (0.5 ml/100 g BW), Diabetic + C (5 mg/kg BW) and Diabetic + GC (0.5 ml/100 g BW of garlic and 5 mg/kg BW of C. colocynthis) groups. The experimental period was 30 days. RESULTS: Oxidative stress, advanced glycation end products (AGEs), immunoexpression of caspase-3, and expression of mRNAs for receptor for advanced glycation end products (RAGE), NADPH oxidase-4 (NOX-4) and nuclear factor kappa B increased in testis of diabetic rats. Treatment with garlic and C. colocynthis alone showed some beneficial effects, but in the combination form the effectiveness was more profound. CONCLUSIONS: We conclude that the combination therapy of diabetic rats with lower doses is still as efficient as higher doses; therefore, the way forward for reducing complications in long term consumption.


Assuntos
Citrullus colocynthis , Diabetes Mellitus Experimental , Alho , Animais , Masculino , Ratos , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/complicações , Alho/química , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Ratos Wistar , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Transdução de Sinais
5.
Mikrochim Acta ; 191(5): 259, 2024 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-38605266

RESUMO

A three-dimensional (3D) self-assembled AuNPs/Ti3C2 MXene hydrogel (AuNPs/Ti3C2 MXH) nanocomposite was prepared for the fabrication of a novel microRNA-122 electrochemical biosensor. The 3D hydrogel structure was gelated from two-dimensional MXene nanosheets with the assistance of graphite oxide and ethylenediamine. MXene hydrogels supported the in situ formation of Au nanoparticles (AuNPs) that predominantly exploring the (111) facet, and these AuNPs are utilized as carriers for hairpin DNA (hpDNA) probes, facilitating DNA hybridization. MXene acted as both a reductant and stabilizer, significantly improving the electrochemical signal. In addition, the conjugation of PAMAM dendrimer-encapsulated AuNPs and H-DNA worked as an ideal bridge to connect targets and efficient electrochemical tags, providing a high amplification efficiency for the sensing of microRNA-122. A linear relationship between the peak currents and the logarithm of the concentrations of microRNA-122 from 1.0 × 10-2 to 1.0 × 102 fM (I = 1.642 + 0.312 lgc, R2 = 0.9891), is obtained. The detection limit is  0.8 × 10-2 fM (S/N = 3). The average recovery for human serum detection ranged from 97.32 to 101.4% (RSD < 5%).


Assuntos
Nanopartículas Metálicas , MicroRNAs , Nitritos , Elementos de Transição , Humanos , Ouro/química , Nanopartículas Metálicas/química , Hidrogéis , Titânio/química , DNA/química
6.
Nat Commun ; 15(1): 3186, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622114

RESUMO

Transcription termination factor ρ is a hexameric, RNA-dependent NTPase that can adopt active closed-ring and inactive open-ring conformations. The Sm-like protein Rof, a homolog of the RNA chaperone Hfq, inhibits ρ-dependent termination in vivo but recapitulation of this activity in vitro has proven difficult and the precise mode of Rof action is presently unknown. Here, our cryo-EM structures of ρ-Rof and ρ-RNA complexes show that Rof undergoes pronounced conformational changes to bind ρ at the protomer interfaces, undercutting ρ conformational dynamics associated with ring closure and occluding extended primary RNA-binding sites that are also part of interfaces between ρ and RNA polymerase. Consistently, Rof impedes ρ ring closure, ρ-RNA interactions and ρ association with transcription elongation complexes. Structure-guided mutagenesis coupled with functional assays confirms that the observed ρ-Rof interface is required for Rof-mediated inhibition of cell growth and ρ-termination in vitro. Bioinformatic analyses reveal that Rof is restricted to Pseudomonadota and that the ρ-Rof interface is conserved. Genomic contexts of rof differ between Enterobacteriaceae and Vibrionaceae, suggesting distinct modes of Rof regulation. We hypothesize that Rof and other cellular anti-terminators silence ρ under diverse, but yet to be identified, stress conditions when unrestrained transcription termination by ρ may be detrimental.


Assuntos
Fator Rho , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fator Rho/química , Transcrição Gênica , RNA/genética , Sítios de Ligação , Regulação Bacteriana da Expressão Gênica , RNA Bacteriano/genética
7.
Nat Commun ; 15(1): 3248, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622112

RESUMO

5,10-methylenetetrahydrofolate reductase (MTHFR) commits folate-derived one-carbon units to generate the methyl-donor S-adenosyl-L-methionine (SAM). Eukaryotic MTHFR appends to the well-conserved catalytic domain (CD) a unique regulatory domain (RD) that confers feedback inhibition by SAM. Here we determine the cryo-electron microscopy structures of human MTHFR bound to SAM and its demethylated product S-adenosyl-L-homocysteine (SAH). In the active state, with the RD bound to a single SAH, the CD is flexible and exposes its active site for catalysis. However, in the inhibited state the RD pocket is remodelled, exposing a second SAM-binding site that was previously occluded. Dual-SAM bound MTHFR demonstrates a substantially rearranged inter-domain linker that reorients the CD, inserts a loop into the active site, positions Tyr404 to bind the cofactor FAD, and blocks substrate access. Our data therefore explain the long-distance regulatory mechanism of MTHFR inhibition, underpinned by the transition between dual-SAM and single-SAH binding in response to cellular methylation status.


Assuntos
Metilenotetra-Hidrofolato Redutase (NADPH2) , S-Adenosilmetionina , Humanos , Regulação Alostérica , Metilenotetra-Hidrofolato Redutase (NADPH2)/química , Microscopia Crioeletrônica , S-Adenosilmetionina/metabolismo , Metilação
8.
Nat Commun ; 15(1): 3227, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622119

RESUMO

Loops are small secondary structural elements that play a crucial role in the emergence of new enzyme functions. However, the evolutionary molecular mechanisms how proteins acquire these loop elements and obtain new function is poorly understood. To address this question, we study glycoside hydrolase family 19 (GH19) chitinase-an essential enzyme family for pathogen degradation in plants. By revealing the evolutionary history and loops appearance of GH19 chitinase, we discover that one loop which is remote from the catalytic site, is necessary to acquire the new antifungal activity. We demonstrate that this remote loop directly accesses the fungal cell wall, and surprisingly, it needs to adopt a defined structure supported by long-range intramolecular interactions to perform its function. Our findings prove that nature applies this strategy at the molecular level to achieve a complex biological function while maintaining the original activity in the catalytic pocket, suggesting an alternative way to design new enzyme function.


Assuntos
Quitinases , Domínio Catalítico , Quitinases/química , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Plantas/metabolismo , Antifúngicos/química
9.
Int J Oral Sci ; 16(1): 30, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38622128

RESUMO

Bacterial resistance and excessive inflammation are common issues that hinder wound healing. Antimicrobial peptides (AMPs) offer a promising and versatile antibacterial option compared to traditional antibiotics, with additional anti-inflammatory properties. However, the applications of AMPs are limited by their antimicrobial effects and stability against bacterial degradation. TFNAs are regarded as a promising drug delivery platform that could enhance the antibacterial properties and stability of nanodrugs. Therefore, in this study, a composite hydrogel (HAMA/t-GL13K) was prepared via the photocross-linking method, in which tFNAs carry GL13K. The hydrogel was injectable, biocompatible, and could be instantly photocured. It exhibited broad-spectrum antibacterial and anti-inflammatory properties by inhibiting the expression of inflammatory factors and scavenging ROS. Thereby, the hydrogel inhibited bacterial infection, shortened the wound healing time of skin defects in infected skin full-thickness defect wound models and reduced scarring. The constructed HAMA/tFNA-AMPs hydrogels exhibit the potential for clinical use in treating microbial infections and promoting wound healing.


Assuntos
Infecções Bacterianas , Ácidos Nucleicos , Humanos , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Ácidos Nucleicos/farmacologia , Hidrogéis/farmacologia , Hidrogéis/química , Cicatrização , Antibacterianos/farmacologia , Anti-Inflamatórios/farmacologia
10.
Sci Rep ; 14(1): 8644, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622163

RESUMO

Gynostemma pentaphyllum (Thunb.) Makino (G. pentaphyllum) is a medicinal and edible plant with multiple functions of liver protection, anti-tumor, anti-inflammation, balancing blood sugar and blood lipids. The nutritional value of the G. pentaphyllum plant is mainly due to its rich variety of biologically active substances, such as flavonoids, terpenes and polysaccharides. In this study, we performed a comprehensive analysis combining metabolomics and root, stem and leaf transcriptomic data of G. pentaphyllum. We used transcriptomics and metabolomics data to construct a dynamic regulatory network diagram of G. pentaphyllum flavonoids and terpenoids, and screened the transcription factors involved in flavonoids and terpenoids, including basic helix-loop-helix (bHLH), myb-related, WRKY, AP2/ERF. Transcriptome analysis results showed that among the DEGs related to the synthesis of flavonoids and terpenoids, dihydroflavonol 4-reductase (DFR) and geranylgeranyl diphosphate synthases (GGPPS) were core genes. This study presents a dynamic image of gene expression in different tissues of G. pentaphyllum, elucidating the key genes and metabolites of flavonoids and terpenoids. This study is beneficial to a deeper understanding of the medicinal plants of G. pentaphyllum, and also provides a scientific basis for further regulatory mechanisms of plant natural product synthesis pathways and drug development.


Assuntos
Flavonoides , Gynostemma , Flavonoides/metabolismo , Gynostemma/genética , Gynostemma/química , Terpenos/metabolismo , Extratos Vegetais/química , Perfilação da Expressão Gênica
11.
Nat Commun ; 15(1): 3247, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622169

RESUMO

Photo-crosslinking polymerization stands as a fundamental pillar in the domains of chemistry, biology, and medicine. Yet, prevailing strategies heavily rely on ultraviolet/visible (UV/Vis) light to elicit in situ crosslinking. The inherent perils associated with UV radiation, namely the potential for DNA damage, coupled with the limited depth of tissue penetration exhibited by UV/Vis light, severely restrict the scope of photo-crosslinking within living organisms. Although near-infrared light has been explored as an external excitation source, enabling partial mitigation of these constraints, its penetration depth remains insufficient, particularly within bone tissues. In this study, we introduce an approach employing X-ray activation for deep-tissue hydrogel formation, surpassing all previous boundaries. Our approach harnesses a low-dose X-ray-activated persistent luminescent phosphor, triggering on demand in situ photo-crosslinking reactions and enabling the formation of hydrogels in male rats. A breakthrough of our method lies in its capability to penetrate deep even within thick bovine bone, demonstrating unmatched potential for bone penetration. By extending the reach of hydrogel formation within such formidable depths, our study represents an advancement in the field. This application of X-ray-activated polymerization enables precise and safe deep-tissue photo-crosslinking hydrogel formation, with profound implications for a multitude of disciplines.


Assuntos
Hidrogéis , Raios Ultravioleta , Masculino , Animais , Bovinos , Ratos , Hidrogéis/química , Raios X , Polimerização , Raios Infravermelhos
12.
Sci Rep ; 14(1): 8706, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622195

RESUMO

The sustainable management of leftover rice straw through biochar production to mitigate CH4 emissions and enhance rice yield remains uncertain and undefined. Therefore, we evaluated the effects of using biochar derived from rice straw left on fields after harvest on greenhouse gas emissions, global warming potential (GWP), and rice yield in the paddy field. The experiment included three treatments: chemical fertilizer (CF), rice straw (RS, 10 t ha-1) + CF, and rice straw-derived biochar (BC, 3 t ha-1 based on the amount of product remaining after pyrolysis) + CF. Compared with CF, BC + CF significantly reduced cumulative CH4 and CO2 emissions, net GWP, and greenhouse gas emission intensity by 42.9%, 37.4%, 39.5%, and 67.8%, respectively. In contrast, RS + CF significantly increased cumulative CH4 emissions and net GWP by 119.3% and 13.8%, respectively. The reduced CH4 emissions were mainly caused by the addition of BC + CF, which did not increase the levels of dissolved organic carbon and microbial biomass carbon, consequently resulting in reduced archaeal abundance, unlike those observed in RS + CF. The BC + CF also enhanced soil total organic carbon content and rice grain yield. This study indicated that using biochar derived from leftover rice straw mitigates greenhouse gas emissions and improves rice productivity in tropical paddy soil.


Assuntos
Carvão Vegetal , Gases de Efeito Estufa , Oryza , Solo/química , Aquecimento Global , Agricultura/métodos , Gases de Efeito Estufa/análise , Oryza/química , Metano/análise , Carbono , Óxido Nitroso/análise
13.
Sci Rep ; 14(1): 8714, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622266

RESUMO

Green, photosynthesizing plants can be proficiently used as cost-effective, single-use, fully biodegradable bioreactors for environmentally-friendly production of a variety of valuable recombinant proteins. Being near-infinitely scalable and most energy-efficient in generating biomass, plants represent profoundly valid alternatives to conventionally used stationary fermenters. To validate this, we produced a plastome-engineered tobacco bioreactor line expressing a recombinant variant of the protein A from Staphylococcus aureus, an affinity ligand widely useful in antibody purification processes, reaching accumulation levels up to ~ 250 mg per 1 kg of fresh leaf biomass. Chromatography resin manufactured from photosynthetically-sourced recombinant protein A ligand conjugated to agarose beads demonstrated the innate pH-driven ability to bind and elute IgG-type antibodies and allowed one-step efficient purification of functional monoclonal antibodies from the supernatants of the producing hybridomas. The results of this study emphasize the versatility of plant-based recombinant protein production and illustrate its vast potential in reducing the cost of diverse biotechnological applications, particularly the downstream processing and purification of monoclonal antibodies.


Assuntos
Cromatografia , Proteína Estafilocócica A , Proteína Estafilocócica A/química , Ligantes , Plantas Geneticamente Modificadas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Anticorpos Monoclonais/metabolismo , Imunoglobulina G/metabolismo , Proteínas de Plantas/metabolismo , Cromatografia de Afinidade/métodos
14.
Sci Rep ; 14(1): 8709, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622262

RESUMO

Sect. tuberculata plant belongs to the Camellia genus and is named for the "tuberculiform protuberance on the surface of the ovary and fruit". It is a species of great ornamental value and potential medicinal value. However, little has been reported on the metabolites of C. tuberculata seeds. Therefore, this study was conducted to investigate the metabolites of C. tuberculata seeds based on UPLC/ESI-Q TRAP-MS/MS with extensively targeted metabolomics. A total of 1611 metabolites were identified, including 107 alkaloids, 276 amino acids and derivatives, 283 flavonoids, 86 lignans and coumarins, 181 lipids, 68 nucleotides and derivatives, 101 organic acids, 190 phenolic acids, 10 quinones, 4 steroids, 17 tannins, 111 terpenoids, and 177 other metabolites. We compared the different metabolites in seeds between HKH, ZM, ZY, and LY. The 1311 identified different metabolites were classified into three categories. Sixty-three overlapping significant different metabolites were found, of which lignans and coumarins accounted for the largest proportion. The differentially accumulated metabolites were enriched in different metabolic pathways between HKH vs. LY, HKH vs. ZM, HKH vs. ZY, LY vs. ZY, ZM vs. LY and ZM vs. ZY, with the most abundant metabolic pathways being 4, 2, 4, 7, 7 and 5, respectively (p < 0.05). Moreover, among the top 20 metabolites in each subgroup comparison in terms of difference multiplicity 7, 8 and 13. ZM and ZY had the highest phenolic acid content. Ninety-six disease-resistant metabolites and 48 major traditional Chinese medicine agents were identified based on seven diseases. The results of this study will not only lead to a more comprehensive and in-depth understanding of the metabolic properties of C. tuberculata seeds, but also provide a scientific basis for the excavation and further development of its medicinal value.


Assuntos
Camellia , Hidroxibenzoatos , Lignanas , Camellia/química , Antioxidantes/química , Espectrometria de Massas em Tandem , Flavonoides/análise , Sementes/química , Metabolômica/métodos , Extratos Vegetais/química , Lignanas/análise , Cumarínicos/análise
15.
Sci Rep ; 14(1): 8672, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622317

RESUMO

Extraction of lignin via green methods is a crucial step in promoting the bioconversion of lignocellulosic biomasses. In the present study, utilisation of natural deep eutectic solvent for the pretreatment of kenaf fibres biomass is performed. Furthermore, extracted lignin from natural deep eutectic solvent pretreated kenaf biomass was carried out and its comparative study with commercial lignin was studied. The extracted lignin was characterized and investigated through Infrared Fourier transform spectroscopy, X-ray Diffraction, thermogravimetric analysis, UV-Vis spectroscopy, and scanning electron microscopy. FTIR Spectra shows that all samples have almost same set of absorption bands with slight difference in frequencies. CHNS analysis of natural deep eutectic solvent pretreated kenaf fibre showed a slight increase in carbon % from 42.36 to 43.17% and an increase in nitrogen % from - 0.0939 to - 0.1377%. Morphological analysis of commercial lignin shows irregular/uneven surfaces whereas natural deep eutectic solvent extracted lignin shows smooth and wavy surface. EDX analysis indicated noticeable peaks for oxygen and carbon elements which are present in lignocellulosic biomass. Thermal properties showed that lignin is constant at higher temperatures due to more branching and production of extremely condensed aromatic structures. In UV-VIS spectroscopy, commercial lignin shows slightly broad peak between 300 and 400 nm due to presence of carbonyl bond whereas, natural deep eutectic solvent extracted lignin does not show up any peak in this range. XRD results showed that the crystallinity index percentage for kenaf and natural deep eutectic solvent treated kenaf was 70.33 and 69.5% respectively. Therefore, these innovative solvents will undoubtedly have significant impact on the development of clean, green, and sustainable products for biocatalysts, extraction, electrochemistry, adsorption applications.


Assuntos
Hibiscus , Lignina , Lignina/química , Solventes Eutéticos Profundos , Biomassa , Carboidratos , Solventes/química , Carbono , Hidrólise
16.
Mikrochim Acta ; 191(5): 264, 2024 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-38622377

RESUMO

Silver nanoparticles supported on metal-organic framework (ZIF-67)-derived Co3O4 nanostructures (Ag NPs/Co3O4) were synthesized via a facile in situ reduction strategy. The resulting materials exhibited pH-switchable peroxidase/catalase-like catalytic activity. Ag NP doping greatly enhanced the catalytic activity of Ag NPs/Co3O4 towards 3,3',5,5'-tetramethylbenzidine (TMB) oxidation and H2O2 decomposition which were 59 times (A652 of oxTMB) and 3 times (A240 of H2O2) higher than that of ZIF-67, respectively. Excitingly, thiophanate-methyl (TM) further enhanced the peroxidase-like activity of Ag NPs/Co3O4 nanozyme due to the formation of Ag(I) species in TM-Ag NPs/Co3O4 and generation of more radicals resulting from strong interaction between Ag NPs and TM. The TM-Ag NPs/Co3O4 nanozyme exhibited lower Km and higher Vmax values towards H2O2 when compared with Ag NPs/Co3O4 nanozyme. A simple, bioelement-free colorimetric TM detection method based on Ag NPs/Co3O4 nanozyme via analyte-enhanced sensing strategy was successfully established with high sensitivity and selectivity. Our study demonstrated that hybrid noble metal NPs/MOF-based nanozyme can be a class of promising artificial nanozyme in environmental and food safety applications.


Assuntos
Cobalto , Nanopartículas Metálicas , Óxidos , Tiofanato , Nanopartículas Metálicas/química , Colorimetria/métodos , Peróxido de Hidrogênio/química , Prata/química , Peroxidases
17.
Drug Des Devel Ther ; 18: 1165-1174, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38623566

RESUMO

Purpose: Citric acid (CA) is a tricarboxylic acid with antioxidant and antimicrobial properties. Based on previous studies, the small compound with its three carboxylic groups can be considered a protein tyrosine phosphatase inhibitor. YopH, a protein tyrosine phosphatase, is an essential virulence factor in Yersinia bacteria. Materials and Methods: We performed enzymatic activity assays of YopH phosphatase after treatment with citric acid in comparison with the inhibitory compound trimesic acid, which has a similar structure. We also measured the cytotoxicity of these compounds in Jurkat T E6.1 and macrophage J774.2 cell lines. We performed molecular docking analysis of the binding of citric acid molecules to YopH phosphatase. Results: Citric acid and trimesic acid reversibly reduced the activity of YopH enzyme and decreased the viability of Jurkat and macrophage cell lines. Importantly, these two compounds showed greater inhibitory properties against bacterial YopH activity than against human CD45 phosphatase activity. Molecular docking simulations confirmed that citric acid could bind to YopH phosphatase. Conclusion: Citric acid, a known antioxidant, can be considered an inhibitor of bacterial phosphatases.


Assuntos
Antioxidantes , Proteínas Tirosina Fosfatases , Ácidos Tricarboxílicos , Humanos , Simulação de Acoplamento Molecular , Proteínas Tirosina Fosfatases/química , Proteínas Tirosina Fosfatases/metabolismo , Tirosina
18.
Mikrochim Acta ; 191(5): 268, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38627271

RESUMO

Hybrid nanozyme graphene quantum dots (GQDs) deposited TiO2 nanotubes (NTs) on titanium foil (Ti/TiO2 NTs-GQDs) were manufactured by bestowing the hybrid with the advantageous porous morphology, surface valence states, high surface area, and copious active sites. The peroxidase-like activity was investigated through the catalytic oxidation of chromogenic substrate 3,3',5,5'-tetramethylbenzidine (TMB) in the presence of H2O2, which can be visualized by the eyes. TiO2 NTs and GQDs comprising oxygen-containing functional groups can oxidize TMB in the presence of H2O2 by mimicking peroxidase enzymes. The peroxidase-mimicking activity of hybrid nanozyme was significantly escalated by introducing light illumination due to the photosensitive features of the hybrid material. The peroxidase-like activity of Ti/TiO2 NTs-GQDs enabled H2O2 determination over the linear range of 7 to 250 µM, with a LOD of 2.1 µM. The satisfying peroxidase activity is possibly due to the unimpeded access of H2O2 to the catalyst's active sites. The porous morphology provides the easy channeling of reactants and products. The periodic structure of the material also gave rise to acceptable reproducibility. Without material functionalization, the Ti/TiO2 NTs-GQDs can be a promising substitute for peroxidases for H2O2 detection.


Assuntos
Benzidinas , Grafite , Nanotubos , Pontos Quânticos , Grafite/química , Peroxidase/química , Pontos Quânticos/química , Peróxido de Hidrogênio/química , Reprodutibilidade dos Testes , Nanotubos/química
19.
Mikrochim Acta ; 191(5): 267, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627300

RESUMO

A ternary hierarchical hybrid Ni@CoxSy/poly(3,4-ethylenedioxythiophene)-reduced graphene oxide (Ni@CoxSy/PEDOT-rGO) is rationally designed and in situ facilely synthesized as electrocatalyst to construct a binder-free sensing platform for non-enzymatic glucose monitoring through traditional electrodeposition procedure. The as-prepared Ni@CoxSy/PEDOT-rGO presents unique hierarchical structure and multiple valence states as well as strong and robust adhesion between Ni@CoxSy/PEDOT-rGO and GCE. Profiting from the aforementioned merits, the sensing platform constructed under optimal conditions achieved a wide detection range (0.2 µM ~ 2.0 mM) with high sensitivity (1546.32 µA cm-2 mM-1), a rapid response time (5 s), an ultralow detection limit (0.094 µM), superior anti-interference performance, excellent reproducibility and considerable stability. Furthermore, the sensor demonstrates an acceptable accuracy and appreciable recoveries ranging from 90.0 to 102.0% with less than 3.98% RSD in human blood serum samples, indicating the prospect of the sensor for the real samples analysis. It will provide a strategy to rationally design and fabricate ternary hierarchical hybrid as nanozyme for glucose assay.


Assuntos
Glicemia , Compostos Bicíclicos Heterocíclicos com Pontes , Cobalto , Grafite , Níquel , Polímeros , Humanos , Níquel/química , Glicemia/análise , Reprodutibilidade dos Testes , Automonitorização da Glicemia , Glucose/análise
20.
Biomed Res Int ; 2024: 1741539, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38628498

RESUMO

Background: Dental implantation has become a standard procedure with high success rates, relying on achieving osseointegration between the implant surface and surrounding bone tissue. Polyether ether ketone (PEEK) is a promising alternative to traditional dental implant materials like titanium, but its osseointegration capabilities are limited due to its hydrophobic nature and reduced surface roughness. Objective: The aim of the study is to increase the surface roughness and hydrophilicity of PEEK by treating the surface with piranha solution and then coating the surface with epigallocatechin-3-gallate (EGCG) by electrospraying technique. Materials and Methods: The study includes four groups intended to investigate the effect of piranha treatment and EGCG coating: a control group of PEEK discs with no treatment (C), PEEK samples treated with piranha solution (P), a group of PEEK samples coated with EGCG (E), and a group of PEEK samples treated with piranha solution and coated with EGCG (PE). Surface roughness, wettability, and microhardness were assessed through statistical analysis. Results: Piranha treatment increased surface roughness, while EGCG coating moderated it, resulting in an intermediate roughness in the PE group. EGCG significantly improved wettability, as indicated by the reduced contact angle. Microhardness increased by about 20% in EGCG-coated groups compared to noncoated groups. Statistical analysis confirmed significant differences between groups in all tests. Conclusion: This study demonstrates the potential of EGCG coating to enhance the surface properties of PEEK as dental implants. The combined piranha and EGCG modification approach shows promise for improved osseointegration, although further vivo research is necessary. Surface modification techniques hold the key to optimizing biomaterial performance, bridging the gap between laboratory findings and clinical implementation in dental implantology.


Assuntos
Catequina/análogos & derivados , Polietilenoglicóis , Polímeros , Polímeros/química , Polietilenoglicóis/química , Benzofenonas , Cetonas/farmacologia , Cetonas/química , Propriedades de Superfície , Éteres , Titânio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...